哈夫曼算法原理
Wikipedia上面说的非常清楚了,这里我就不再赘述,直接贴过来了。
1952年, David A. Huffman提出了一个不同的算法,这个算法能够为不论什么的可能性提供出一个理想的树。香农-范诺编码(Shanno-Fano)是从树的根节点到叶子节点所进行的的编码,哈夫曼编码算法却是从相反的方向,暨从叶子节点到根节点的方向编码的。
- 为每一个符号建立一个叶子节点,并加上其对应的发生频率
- 当有一个以上的节点存在时,进行下列循环:
- 把这些节点作为带权值的二叉树的根节点,左右子树为空
- 选择两棵根结点权值最小的树作为左右子树构造一棵新的二叉树,且至新的二叉树的根结点的权值为其左右子树上根结点的权值之和。
- 把权值最小的两个根节点移除
- 将新的二叉树增加队列中.
- 最后剩下的节点暨为根节点,此时二叉树已经完毕。
演示样例
-
符号 A B C D E 计数 15 7 6 6 5 概率 0.38461538 0.17948718 0.15384615 0.15384615 0.12820513
在这样的情况下,D,E的最低频率和分配分别为0和1,分组结合概率的0.28205128。如今最低的一双是B和C,所以他们就分配0和1组合结合概率的0.33333333在一起。这使得BC和DE所以0和1的前面加上他们的代码和它们结合的概率最低。然后离开仅仅是一个和BCDE,当中有前缀分别为0和1,然后结合。这使我们与一个单一的节点,我们的算法是完整的。
可得A代码的代码长度是1比特,其余字符是3比特。
-
字符 A B C D E 代码 0 100 101 110 111
Pseudo-code
1: begin 2: count frequencies of single characters (source units) 3: output(frequencies using Fibonacci Codes of degree 2) 4: sort them to non-decreasing sequence 5: create a leaf node (character, frequency c, left son = NULL, right son = NULL) 6: of the tree for each character and put nodes into queue F 7: while (|F|>=2) do 8: begin 9: pop the first two nodes (u1, u2) with the lowest 10: frequencies from sorted queue11: create a node evaluated with sum of the chosen units, 12: successors are chosen units (eps, c(u1)+c(u2), u1, u2)13: insert new node into queue14: end15: node evaluate with way from root to leaf node (left son 1, right son 0)16: create output from coded intput characters17: end
哈夫曼算法实现
/************************************************************************//* File Name: Huffman.cpp* @Function: Lossless Compression @Author: Sophia Zhang @Create Time: 2012-9-26 10:40 @Last Modify: 2012-9-26 11:10*//************************************************************************/#include"iostream"#include "queue"#include "map"#include "string"#include "iterator"#include "vector"#include "algorithm"using namespace std;#define NChar 8 //suppose use at most 8 bits to describe all symbols#define Nsymbols 1<Huff_code;//8 bit code of one charmap Huff_Dic; //huffman coding dictionaryclass HTree{public : HTree* left; HTree* right; char ch; int weight; HTree(){left = right = NULL; weight=0;} HTree(HTree* l,HTree* r,int w,char c){left = l; right = r; weight=w; ch=c;} ~HTree(){delete left; delete right;} int Getweight(){return weight?weight:left->weight+right->weight;} bool Isleaf(){return !left && !right; } bool operator < (const HTree tr) const { return tr.weight < weight; }};HTree* BuildTree(int *frequency){ priority_queue QTree; //1st level add characters for (int i=0;i 1) { HTree* lc = QTree.top(); QTree.pop(); HTree* rc = QTree.top(); QTree.pop(); HTree* parent = new HTree(lc,rc,parent->Getweight(),(char)256); QTree.push(parent); } //return tree root return QTree.top();}void Huffman_Coding(HTree* root, Huff_code& curcode){ if(root->Isleaf()) { Huff_Dic[root->ch] = curcode; return; } Huff_code& lcode = curcode; Huff_code& rcode = curcode; lcode.push_back(false); rcode.push_back(true); Huffman_Coding(root->left,lcode); Huffman_Coding(root->right,rcode);}int main(){ int freq[Nsymbols] = {0}; char *str = "this is the string need to be compressed"; //statistic character frequency while (*str!='\0') freq[*str++]++; //build tree HTree* r = BuildTree(freq); Huff_code nullcode; nullcode.clear(); Huffman_Coding(r,nullcode); for(map ::iterator it = Huff_Dic.begin(); it != Huff_Dic.end(); it++) { cout<<(*it).first<<'\t'; Huff_code vec_code = (*it).second; for (vector ::iterator vit = vec_code.begin(); vit!=vec_code.end();vit++) { cout<<(*vit)<
那我们将friend bool operator >(Node node1,Node node2)改动为friend bool operator >(Node* node1,Node* node2),也就是传递的是Node的指针行不行呢?
答案是不能够,由于依据c++primer中重载操作符中讲的“程序猿仅仅能为类类型或枚举类型的操作数定义重载操作符,在把操作符声明为类的成员时,至少有一个类或枚举类型的參数依照值或者引用的方式传递”,也就是说friend bool operator >(Node* node1,Node* node2)形參中都是指针类型的是不能够的。我们仅仅能再建一个类,用当中的重载()操作符作为优先队列的比較函数。
就得到了以下正确的代码:
/************************************************************************//* File Name: Huffman.cpp* @Function: Lossless Compression @Author: Sophia Zhang @Create Time: 2012-9-26 10:40 @Last Modify: 2012-9-26 12:10*//************************************************************************/#include"iostream"#include "queue"#include "map"#include "string"#include "iterator"#include "vector"#include "algorithm"using namespace std;#define NChar 8 //suppose use 8 bits to describe all symbols#define Nsymbols 1<Huff_code;//8 bit code of one charmap Huff_Dic; //huffman coding dictionary/************************************************************************//* Tree Class elements:*2 child trees*character and frequency of current node*//************************************************************************/class HTree{public : HTree* left; HTree* right; char ch; int weight; HTree(){left = right = NULL; weight=0;ch ='\0';} HTree(HTree* l,HTree* r,int w,char c){left = l; right = r; weight=w; ch=c;} ~HTree(){delete left; delete right;} bool Isleaf(){return !left && !right; }};/************************************************************************//* prepare for pointer sorting*//*because we cannot use overloading in class HTree directly*//************************************************************************/class Compare_tree{public: bool operator () (HTree* t1, HTree* t2) { return t1->weight> t2->weight; }};/************************************************************************//* use priority queue to build huffman tree*//************************************************************************/HTree* BuildTree(int *frequency){ priority_queue ,Compare_tree> QTree; //1st level add characters for (int i=0;i 1) { HTree* lc = QTree.top(); QTree.pop(); HTree* rc = QTree.top(); QTree.pop(); HTree* parent = new HTree(lc,rc,lc->weight+rc->weight,(char)256); QTree.push(parent); } //return tree root return QTree.top();}/************************************************************************//* Give Huffman Coding to the Huffman Tree*//************************************************************************/void Huffman_Coding(HTree* root, Huff_code& curcode){ if(root->Isleaf()) { Huff_Dic[root->ch] = curcode; return; } Huff_code lcode = curcode; Huff_code rcode = curcode; lcode.push_back(false); rcode.push_back(true); Huffman_Coding(root->left,lcode); Huffman_Coding(root->right,rcode);}int main(){ int freq[Nsymbols] = {0}; char *str = "this is the string need to be compressed"; //statistic character frequency while (*str!='\0') freq[*str++]++; //build tree HTree* r = BuildTree(freq); Huff_code nullcode; nullcode.clear(); Huffman_Coding(r,nullcode); for(map ::iterator it = Huff_Dic.begin(); it != Huff_Dic.end(); it++) { cout<<(*it).first<<'\t'; std::copy(it->second.begin(),it->second.end(),std::ostream_iterator (cout)); cout<